 |
advertisement |
|
|
|
|
|
|
Applied Physics and Mathematics Annotation << Back
The distribution of prime tuples
in the natural numbers |
V.L. Vol'fson
The work consists of seven of our assertions. At 1-3 the author
claims it is proved that the number of prime twins in a natural
series of numbers in the more general case of finding and
proof of the asymptotic distribution law noncomposite tuples
consisting of k primes and prove their infinity in a natural
series of numbers. In assertions 4-6 shows that estimates
of the number of tuples in a simple non-composite natural
numbers, and through a series of improper integral differ
by a constant amount. The estimation of this constant from
the top. It is shown that in a finite interval estimates of the
number of tuples of k prime by a finite sum and the definite
integral differ by no more than one tuple, so the two estimates
can be used in the practice of computing. 7 In approving an
estimate of the number of tuples in a simple constituent of
natural numbers.
Key words: prime, reduced residue system, module, prime k-tuples,
first Hardy–Littlewood conjecture, twin prime, asymptotic
distribution, the average density, the asymptotic density, the
number, spacing.
Contacts: E-mail: znakvicvolf@mail.ru
Pp. 64-71. |
|
|
|
Last news:
Выставки по автоматизации и электронике «ПТА-Урал 2018» и «Электроника-Урал 2018» состоятся в Екатеринбурге Открыта электронная регистрация на выставку Дефектоскопия / NDT St. Petersburg Открыта регистрация на 9-ю Международную научно-практическую конференцию «Строительство и ремонт скважин — 2018» ExpoElectronica и ElectronTechExpo 2018: рост площади экспозиции на 19% и новые формы контент-программы Тематика и состав экспозиции РЭП на выставке "ChipEXPO - 2018" |