 |
advertisement |
|
|
|
|
|
|
Applied Physics and Mathematics Annotation << Back
A method of computation of the green function for the laplace equation |
Konnikov I.A.
A novel variant of an approximate analytical method of computation
for a field described with the Laplace equation is
proposed and set out for multi-layered media with flat parallel
layers. The applied approach is based upon employing special
properties of the Bessel functions, the Struve functions and the
theta-function with approximating one of the cofactors in the
integrand and an evaluation of the antiderivative for the integral
representing the Green function. As a result, an approximate analytical
method of integration with a variable step is proposed.
The gist of the method is set out, its precision and computation
capacity are assessed. Two variants of the corresponding techniques
are drawn up. The first one is an alternative to the longestablished
method based upon the Weber-Lipchitz identity, for
great azimuth distances. The other one is implied to use some
quadrature formula of numerical integration and is eligible for
high-precision computing the Green function, being particularly
preferred in case of the necessity of verifying other techniques
which lose their precision at great azimuth distances. An elucidatory
instance is supplied.
Keywords: Green function, Laplace equation, Theta-function
technique.
Contacts: E-mail: konnikov_i@mail.ru
Pp. 75-83. |
|
|
|
Last news:
Выставки по автоматизации и электронике «ПТА-Урал 2018» и «Электроника-Урал 2018» состоятся в Екатеринбурге Открыта электронная регистрация на выставку Дефектоскопия / NDT St. Petersburg Открыта регистрация на 9-ю Международную научно-практическую конференцию «Строительство и ремонт скважин — 2018» ExpoElectronica и ElectronTechExpo 2018: рост площади экспозиции на 19% и новые формы контент-программы Тематика и состав экспозиции РЭП на выставке "ChipEXPO - 2018" |