 |
advertisement |
|
|
|
|
|
|
Applied Physics and Mathematics Annotation << Back
The application of integrated presentation
to boundary problems |
G.F. Efimova
N.G. Shmeleva
The main focus of the study is unique solvability of generalized
solutions of the Tricomi problem for the Lavrent’ev–Bicadze with
real parameter, provided that the elliptic part of the boundary
line at the approach to change the type of ends arbitrarily small
semicircle arcs. To prove the existence problem is solved using
the integral representation obtained in I.N. Vekua, V.I. Zhegalova,
K.B. Sabitova used and the method of reducing boundary problems
to a singular integral equation, which is the method of regularization
Carleman–Vekua reduced to a Fredholm integral equation
of the second kind. In the proof of uniqueness of the solution
of the boundary value problem are used:
1) extremum principle for second order elliptic systems ;
2) the method of introducing new features and a new variable ;
3) the Laplace transform on the line type change.
The results obtained are new and have a theoretical character.
They can be used in the further development of the theory
of boundary value problems for equations of mixed type,
and were presented in the form of presentations at scientific
conferences.
Keywords: The generalized Tricomi equation of mixed type,
boundary value problems, integral representation, the unique
solvability of the proof, the theorem, the function.
Contacts: E-mail: shmelyova-2010@yandex.ru
Pp. 57-64. |
|
|
|
Last news:
Выставки по автоматизации и электронике «ПТА-Урал 2018» и «Электроника-Урал 2018» состоятся в Екатеринбурге Открыта электронная регистрация на выставку Дефектоскопия / NDT St. Petersburg Открыта регистрация на 9-ю Международную научно-практическую конференцию «Строительство и ремонт скважин — 2018» ExpoElectronica и ElectronTechExpo 2018: рост площади экспозиции на 19% и новые формы контент-программы Тематика и состав экспозиции РЭП на выставке "ChipEXPO - 2018" |