 |
advertisement |
|
|
|
|
|
|
Applied Physics and Mathematics Annotation << Back
Determination of potential
component of the vector
field of control system
by constructing
a homotopy operator |
S.N. Chukanov
A method for decomposing a vector field of a dynamical system
based on the construction of homotopy operator is proposed in
this paper. The vector field is decomposed on the exact component
corresponding to the gradient vector field, and anti-exact
component. In the case of a linear dynamic system the decomposition
leads to components, corresponding representations of
the symmetric and skew-symmetric matrices. The method can be
used to construct systems of dynamic systems. The method can
be used to construct systems of dynamic systems for the study
of system stability. The inverse problem of the dynamics of the
controlled system of finding the vector potential forces for the
formation of system movement on the required trajectory is
considered. The use of the foregoing decomposition method for
dynamical systems described by first order differential equations,
allows to form the Lagrangian that Euler-Lagrange equations will
correspond the original differential equations.
Keywords: decomposition of the vector field, stability of control
system, Lyapunov function, operator of homotopy, inverse
problem of dynamics.
Contacts: E-mail: ch_sn@mail.ru
Pp. 40-46. |
|
|
|
Last news:
Выставки по автоматизации и электронике «ПТА-Урал 2018» и «Электроника-Урал 2018» состоятся в Екатеринбурге Открыта электронная регистрация на выставку Дефектоскопия / NDT St. Petersburg Открыта регистрация на 9-ю Международную научно-практическую конференцию «Строительство и ремонт скважин — 2018» ExpoElectronica и ElectronTechExpo 2018: рост площади экспозиции на 19% и новые формы контент-программы Тематика и состав экспозиции РЭП на выставке "ChipEXPO - 2018" |