 |
advertisement |
|
|
|
|
|
|
Applied Physics and Mathematics Annotation << Back
ASYMPTOTIC REPRESENTATION OF A FILTRATION FIELD
IN A FORMATION WITH LAYER INHOMOGENEITY |
А.I. FILIPPOV, О.V. AKHMETOVA, А.А. KOVALSKIY
The asymptotic solution of the problem of radial fi ltration in semi-infi nite arrays separated by a layer with different properties is presented
in the fi rst approximation. The presence of such a solution allows us to investigate the detailed pressure distribution in the formation,
which in the zeroth approximation does not depend on the vertical coordinate. The construction of the expression for the fi rst coeffi cient
of the asymptotic expansion is reduced to the solution of the nonclassical conjugation problem containing the values of the normal
derivative of the pressure fi eld in the covering and underlying massifs on the media interfaces (the trace of the derivative). To obtain a
unique solution of the problem for the fi rst decomposition coeffi cient, a refi neme nt of the condition on the viscous boundary is required.
This limiting condition on the well axis is weakened and replaced by the condition for the integral of the unknown function (nonlocal
integral). In the Laplace-Carson and Fourier-Bessel image spaces, the exact solution of the pressure fi eld problem in the fi rst asymptotic
approximation is found.
Keywords: fi ltration, pressure fi eld, conjugation problem, asymptotic method.
Contacts: E-mail: filippovai@rambler.ru
Pp. 33-45. |
|
|
|
Last news:
Выставки по автоматизации и электронике «ПТА-Урал 2018» и «Электроника-Урал 2018» состоятся в Екатеринбурге Открыта электронная регистрация на выставку Дефектоскопия / NDT St. Petersburg Открыта регистрация на 9-ю Международную научно-практическую конференцию «Строительство и ремонт скважин — 2018» ExpoElectronica и ElectronTechExpo 2018: рост площади экспозиции на 19% и новые формы контент-программы Тематика и состав экспозиции РЭП на выставке "ChipEXPO - 2018" |